
ORNL/TM-2015/596

User Manual: Toolkit for Adaptive
Stochastic Modeling and Non-Intrusive
Approximation (TASMANIAN)

Miroslav Stoyanov

September 2019, version 7.0Approved for public release.
Distribution is unlimited.

DOCUMENT AVAILABILITY
Reports produced after January 1, 1996, are generally available free via US Department of
Energy (DOE) SciTech Connect.

Website: http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the
public from the following source:

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone: 703-605-6000 (1-800-553-6847)
TDD: 703-487-4639
Fax: 703-605-6900
E-mail: info@ntis.gov
Website: http://classic.ntis.gov/

Reports are available to DOE employees, DOE contractors, Energy Technology Data
Exchange representatives, and International Nuclear Information System representatives
from the following source:

Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831
Telephone: 865-576-8401
Fax: 865-576-5728
E-mail: report@osti.gov
Website: http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by
an agency of the United States Government. Neither the United
States Government nor any agency thereof, nor any of their em-
ployees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial prod-
uct, process, or service by trade name, trademark, manufacturer,
or otherwise, does not necessarily constitute or imply its endorse-
ment, recommendation, or favoring by the United States Govern-
ment or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

 http://www.osti.gov/scitech/
mailto:info@ntis.gov
http://classic.ntis.gov/
mailto:reports@osti.gov
http://www.osti.gov/contact.html

ORNL/TM-2015/596

Computer Science and Mathematics Division

USER MANUAL: TOOLKIT FOR ADAPTIVE STOCHASTIC MODELING AND
NON-INTRUSIVE APPROXIMATION (TASMANIAN)

Miroslav Stoyanov

Date Published: September 2017

Prepared by
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, TN 37831-6283
managed by

UT-Battelle, LLC
for the

US DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725

CONTENTS

LIST OF FIGURES . iv
LIST OF TABLES . v
ABSTRACT . 1
1 Quick Overview . 2

1.1 Sparse grids . 2
1.2 DREAM . 3

2 Sparse Grids . 5
2.1 Global Grids: General construction . 5
2.2 Global Grids: Approximation error . 6
2.3 Global Grids: Sequence Grid . 8
2.4 Global Grids: Refinement . 9
2.5 Global Grids: One dimensional rules . 10

2.5.1 Chebyshev rules . 10
2.5.2 Gauss rules . 10
2.5.3 Greedy rules . 11

2.6 Fourier Grids . 13
2.7 Local Polynomial Grids: Hierarchical interpolation rule . 14
2.8 Local Polynomial Grids: Adaptive refinement . 16
2.9 Local Polynomial Grids: One dimensional rules . 17
2.10 Wavelets . 21
2.11 Domain Transformation . 23

2.11.1 Conformal Map . 23
2.12 Alternative coefficient construction . 24

3 Random Sampling . 25
3.1 DREAM: General algorithm . 25
3.2 Supported probability distributions . 26

iii

LIST OF FIGURES

1 Local polynomial points (rule localp) and functions, left to right: linear, quadratic, and
cubic functions. 18

2 Semi-local polynomial points (rule semilocalp) and functions, left to right: linear,
quadratic, and cubic functions. 19

3 Semi-local polynomial points (rule localp0) and functions, left to right: linear, quadratic,
and cubic functions. 20

4 Semi-local polynomial points (rule localp) rule with order 0. 21
5 The first three levels for wavelets of order 1 (left) and 3 (right). The functions associated

with x13, x14, x15, and x16 are purposely omitted to reduce the clutter on the plot, since
the funcitons are mirror images of the those associated with x12, x11, x10, and x9

respectively. 22

iv

LIST OF TABLES

1 Summary of the available Chebyshev rules. 11
2 Summary of the available Gauss rules. 12
3 Summary of the available greedy sequence rules. 13
4 Probability distributions included in Tasmanian. The normalization constant for the

Truncated Gaussian distribution is
C̃ =

(√
2πσ −

∫
(−∞,a)∪(b,∞) exp

(
− 1

2σ (ξ − µ)2
)
dξ
)

, and Γ(α) us the gamma funciton. . . 26

v

ABSTRACT

This documents serves to explain the general mathematics of the Toolkit for Adaptive Stochastic Modeling
And Non-Intrusive Approximation (TASMANIAN) and to provide further references to the methods and
approaches. Detailed documentation of the C++ code and other interfaces is included in the on-line Doxygen
documentation.

Doxygen documentation for the latest stable release can be found at:
https://tasmanian.ornl.gov/documentation/

The documentation of the rolling release can be found at:
https://ornl.github.io/TASMANIAN/

1

https://tasmanian.ornl.gov/documentation/
https://ornl.github.io/TASMANIAN/

1 Quick Overview

1.1 Sparse grids

Sparse Grids refers to a family of algorithms for approximation of multidimensional functions and inte-
grals, where the approximation operator is constructed as a linear combination of tensors of multiple one
dimensional operators[41, 19, 35, 36, 31, 22, 30, 1, 3, 21, 13, 4, 18, 44, 46, 47, 43, 51, 52, 17, 7, 23, 25, 26,
27, 29, 33, 34, 38, 39, 45, 40, 12, 15].

The Tasmanian sparse grids library implements a wide variety of sparse grids methods with different one
dimensional operators and different ways of constructing the linear combination of tensors.

Let Γak,bk = [ak, bk] ⊂ R, for k = 1, 2, . . . , d, indicate a set of one dimensional intervals and let Γa,b =⊗d
k=1 Γak,bk ⊂ Rd be a d-dimensional sparse grids domain. A sparse grid consists of a set of points

{xi}Ni=1 ∈ Γa,b and associated numerical quadrature weights {xi}Ni=1 ∈ R or interpolation basis functions
{φi(x)}Ni=1 ∈ C0(Γa,b). Usually, ak and bk are finite, however, Gauss-Hermite and Gauss-Laguerre rules
allow for the use of unbounded domain. Note that Tasmanian constructs grids using the canonical interval
[−1, 1] and the result is then translated (via a linear transformation) to the specific [ak, bk]; also Gauss-
Hermite and Gauss-Laguerre rules use canonical intervals (−∞,+∞) and [0,∞) respectively.

Let f(x) : Γ→ R indicate a d-dimensional function, where w.l.o.g. we assume Γ is the canonical domain.
We consider two types of approximations, point-wise approximations f̃(x) where f̃(x) ≈ f(x) for all
x ∈ Γ and numerical integration Q(f) where Q(f) ≈

∫
Γ f(x)ρ(x)dx. The weight ρ(x) is specific to the

one dimensional rule that induces the grid; most rules assume uniform weight ρ(x) = 1, however, Gauss-
Chebyshev, Gegenbauer, Jacobi, Hermite, and Laguerre, rules use different weights (see Table 2). Note:
Tasmanian can handle functions with multiple outputs (e.g., vector valued functions), then f̃(x) and Q(f)
have a corresponding number of outputs.

Point-wise approximations can be implemented in two different ways, since both ways result in identical
f̃(x) there is no official language to distinguish between the two method, hence we’ll use the terms internal
and adjoint. The internal form is

f̃(x) =
N∑
i=1

ciφi(x), (1)

where φi(x) are basis functions determined by the one dimensional rule and the chosen set of tensors, and
the weights ci are computed from the values of f(xi). The term internal refers to the fact that the software
library needs direct access to the values f(xi) in order to compute the coefficients ci. In contrast, the adjoint
form is given by

f̃(x) =

N∑
i=1

ψi(x)f(xi), (2)

where ψi(x) depend on the 1-D rule and tensors and can be computed independent from f(xi). Using the
adjoint approach, Tasmanian can approximate functions with arbitrary output and arbitrary data-structures,
i.e., the library can generate the ψi(x) weights and the sum can be computed by user written or third party
code. Note that (1) and (2) result in point-wise identical approximation, however, in general, the adjoint
approach is usually significantly more expensive (computationally). When φi(x) are Lagrange polynomials,
then ci = f(xi) and ψi(x) = φi(x) and both approximation methods are computationally equivalent.

2

In general, sparse grids approximations are not interpolatory, however, when the underlying one dimensional
rule is nested (i.e., the nodes at level l are a subset of the nodes at level l + 1), then f̃(xi) = f(xi)
at all grid points {xi}Ni=1. The Gauss rules implemented in Tasmanian (except Gauss-Patterson) and the
Chebyshev rule are non-nested, all other rules are nested. In general, nested grids have fewer points which
leads to fewer evaluations of f(xi) and nesting allows the employment of various refinement strategies.
Tasmanian implements two types of refinement based on hierarchical surpluses[43] and anisotropic quasi-
optimal polynomial spaces[46].

Employing numerical quadrature, the integral of f(x) is approximated as

∫
Γ
f(x)ρ(x)dx ≈ Q[f] =

N∑
i=1

wif(xi), (3)

where the points {xi}Ni=1 and the weights {wi}Ni=1 depend on the one dimensional rule and the selec-
tion of tensors. In general, Q(f) can be constructed from f̃(x) by integrating the approximation (i.e.,
wi =

∫
Γ ψi(x)dx), however, Gauss rules allow for better accuracy by selecting the points xi at the roots

of polynomials that are orthogonal with respect to ρ(x) (see table 2). Gauss-Patterson and Gauss-Legendre
rules use the same uniform ρ(x), however, Gauss-Patterson points have the additional constraint of being
nested. In one dimension, Gauss-Legendre rule is more accurate than Gauss-Patterson, however, in a mul-
tidimensional setting the nested property of Gauss-Patterson leads to better accuracy per number of points.
Unlike Gauss-Legendre, the Gauss-Patterson points and weights are very difficult to compute and this library
provides only the first 9 levels as hard-coded constants.

Tasmanian implements a variety of different grids and those are grouped into 4 categories:

• Global Grids: f̃(x) is constructed using Lagrange polynomials and the grids are suitable for approx-
imating smooth and analytic functions. All Gauss integration rules fall in this category. See §2.1.

• Sequence Grids: for a class of rules (namely Leja, R-Leja, R-Leja-Shifted, min/max-Lebesgue and
min-Delta, see Table 3) the sequence grids offer an alternative implementation based on Newton
polynomials. Sequence grids can evaluate f̃(x) (for a given x) much faster, however, speed comes
with higher storage overhead as well as higher computational cost for most other operations, especially
loading the values and using ajoint interpolation. Note that the difference between global and sequence
grids is only in implementation, otherwise a sequence and a global grid with the same rule and points
would result in identical f̃(x). See §2.1.

• Local Polynomial Grids: suitable for non-smooth functions with locally sharp behavior. Interpola-
tion is based on hierarchical piece-wise polynomials with local support and varying order. See §2.7.

• Wavelet Grids: are similar to the local polynomials, however, using wavelet basis. Coupled with
local refinement, often times wavelet grids provide the same accuracy with fewer abscissas. See §2.7.

1.2 DREAM

Starting with version 5.0, Tasmanian includes a module for random sampling based on the DiffeRential
Evolution Adaptive Metropolis (DREAM) algorithm. Suppose ρ(x) be a non-negative function defined
over a domain Γ ⊂ Rd where we make no assumptions regarding compactness or structure of Γ. We assume

3

that ∫
Γ
ρ(x)dx <∞,

in which case normalizing ρ(x) will give us a probability density function (PDF). It is not necessary to
explicitly compute the normalizing constant and the random sampling algorithm works with unscaled ρ(x).
The goal of the random sampling procedure is to generate a number of samples {xi}Ni=1 that are distributed
according to the ρ(x) PDF. This is done by iteratively evolving a series of chains and the update algorithm
depends on the current distribution of the chains and a random correction factor[6, 16, 49, 50, 53].

Bayesian inference is a common application area for this type of sampling algorithms [6]. In the inference
paradigm, we have a model f : Γ → Rµ and (potentially noisy) observation data d ∈ Rµ, the objective
is to assign “belief” to the values of x that correspond to the data. The “belief” is defined by a posterior
probability distribution ρ(x) defined by Bayes’ rule

ρ(x) = L(d, f(x))ρp(x), (4)

where L(d, f(x)) is the likelihood function indicating the probability that the discrepancy between d and
f(x) is due entirely to noise, and ρp(x) is a probability distribution indicating our prior “belief” regarding
the values of x. The scaling factor in (4) is omitted. The statistics of ρ(x) can be computed from a
sufficiently large number of random samples collected by the DREAM algorithm

Accurate statistical analysis requires a huge number of random samples, which is prohibitive when the
f(x) is expensive to compute. A common practice is to replace the expensive f(x) by a cheap to evaluate
sparse grid surrogate. The Tasmanian DREAM module can collect samples from an arbitrary user defined
ρ(x) (not necessarily associated with an inference problem), a sparse grid approximation of the likelihood
function or model. The user can provide a custom defined model as well. Currently, Tasmanian includes
implementation of Gaussian likelihood, i.e.,

L(d, f(x)) = exp
(
−(d− f(x))Tσ−1(d− f(x))

)
, (5)

where σ ∈ Rµ×µ is user defined covariance. Tasmanian also includes priors based on Uniform, Gaussian,
truncated Gaussian, Beta, Gamma, and Exponential pdfs. The C++ library makes extensive use of poly-
morphism and can be easily extended with additional custom prior distributions, likelihood functions, and
custom models.

4

2 Sparse Grids

2.1 Global Grids: General construction

Let {xj}∞j=1 ∈ R denote a sequence of distinct points (in either a canonical or transformed interval Γa,b),
and let m : N → N be a strictly increasing growth function. We define a one dimensional nested family of
interpolants {Um(l)}∞l=0, where Um(l) is associated with the first m(l) points {xj}m(l)

j=1 and Lagrange basis

functions {φlj(x)}m(l)
j=1 defined by φlj(x) =

∏m(l)
i=1,i 6=j

x−xi
xj−xi , i.e.,

f̃ (l)(x) = Um(l)[f](x) =

m(l)∑
j=1

f(xj)φ
l
j(x). (6)

The corresponding numerical quadrature is given by∫
f(x)ρ(x)dx ≈ Q[f] =

m(l)∑
j=1

wljf(xj), (7)

where wlj =
∫
φlj(x)ρ(x)dx. In a non-nested case, different nodes are associated with each level, i.e.,

{{xlj}
m(l)
j=1 }∞l=0 and the basis function and operators are defined accordingly. Examples of nested and non-

nested one dimensional rules are listed in Tables 1, 2, and 3.

The point-wise approximation and quadrature construction can be expressed in the same operator notation,
hence, we define the surplus operators as

∆m(l) = Um(l) − Um(l−1), or ∆m(l) = Qm(l) −Qm(l−1) (8)

depending on whether we are interested in constructing f̃(x) or Q[f]. We also use the convention that
∆m(0) = Um(0) or ∆m(0) = Qm(0).

The d-dimensional tenor operators are given by

∆m(i) =
d⊗

k=1

∆m(ik), Um(i) =
d⊗

k=1

Um(ik), Qm(i) =
d⊗

k=1

Qm(ik)

where we assume standard multi-index notation∗. A sparse grid operator is defined as

GΘ[f] =
∑
i∈Θ

∆m(i), (9)

where Θ is a lower set†. An explicit form of the points associated with the sparse grid can be obtained by
first defining the tensors

m(i) =
d⊗

k=1

m(ik), xj =
d⊗

k=1

xjk ,

∗For the remainder of this document we let N be the set of natural numbers including zero, and Λ,Θ ⊂ Nd will denote set of
multi-indexes. For any two vectors, we define xν =

∏d
k=1 x

νk
k with the usual convention 00 = 1.

†A set Λ is caller lower or admissible if ν ∈ Λ implies {i ∈ Nd : i ≤ ν} ⊂ Λ, where i ≤ ν if and only if ik ≤ νk for all
1 ≤ k ≤ d.

5

then the points associated with (9) are given by

{xj}j∈X(Θ), where X(Θ) =
⋃
i∈Θ

{1 ≤ j ≤m(i)}. (10)

In the non-nested case, X(Θ) consists of pairs of multi-indexes X(Θ) =
⋃
i∈Θ

⋃
1≤j≤m(i){(i, j)}, and the

points are {xij}(i,j)∈X(Θ) where xij =
⊗d

k=1 x
ik
jk

.

For every lower set Θ, there is a set of (integer) weights {tj}j∈Θ(L) that satisfy
∑
i≤j,j∈Θ(L) tj = 1 for

every i ∈ Θ(L), i.e., ti solve a linear system of equations. Then,

GΘ[f] =
∑
i∈Θ

∆m(i) =
∑
i∈Θ

tiUm(i), (11)

or in the context of integration GΘ[f] =
∑
i∈Θ tiQm(i). Thus, we explicitly write the Lagrange basis

functions and quadrature weights as

φj(x) =
∑

i∈Θ,m(i)≥j

ti

d∏
k=1

φikjk , (12)

where each φikjk is evaluated at the corresponding k-th component of x and we note that in the nested case
φj(x) = ψj(x) where ψj(x) are defined in (2). Similarly, the quadrature weights are given by

wj =
∑

i∈Θ,m(i)≥j

ti

d∏
k=1

wikjk . (13)

Therefore, the explicit form of the sparse grids approximation is given by

f̃Θ(x) =
∑

j∈X(Θ)

f(xj)φj(x), QΘ[f] =
∑

j∈X(Θ)

f(xj)wj . (14)

For the non-nested case, we have

f̃Θ(x) =
∑

(i,j)∈X(Θ)

f(xij)ti

d∏
k=1

φikjk , QΘ[f] =
∑

(i,j)∈X(Θ)

f(xij)ti

d∏
k=1

wikjk . (15)

Note, that some non-nested rules may share points, e.g., all one dimensional Gauss-Legendre rules with
odd number of points include 0, thus, it is possible to have the same point for different index pairs (i, j).
Tasmanian automatically groups the functions and weights associated with those points and the library uses
only unique points.

2.2 Global Grids: Approximation error

First we consider the polynomial space∗ for which the approximation is exact (i.e., no error). For interpola-
tion Um(l)[p] = p for all p ∈ Pm(l)−1 and for quadrature rules there is a non-decreasing function q : N→ N

∗P l = span{xν : ν ≤ l} and for a lower multi-index set define PΛ = span{xν : ν ≤ i}i∈Λ.

6

so that Qm(l)[p] = p for all p ∈ Pq(l). For Gauss rules q(l) = 2m(l) − 1, except Gauss-Patterson where
q(l) = 3

2m(l) − 1
2 . For other rules generally q(l) = m(l) − 1 except for rules with symmetric and odd

number of points (e.g., Clenshaw-Curtis), where q(l) = m(l) since any symmetric rule integrates exactly
all odd power monomials.

For a general sparse grid point-wise approximation

GΘ[p] = p, for all p ∈ PΛm(Θ), where Λm(Θ) =
⋃
i∈Θ

{j : j ≤m(i)− 1}. (16)

And for numerical quadrature

GΘ[p] = p, for all p ∈ PΛq(Θ), where Λq(Θ) =
⋃
i∈Θ

{j : j ≤ q(i)}∗. (17)

Thus, Λm(Θ) and Λq(Θ) define the polynomial spaces associated with GΘ.

Let C0(Γ) be the space of all continuous functions f : Γ→ R imbued with sup (or L∞) norm ‖f‖C0(Γ) =
maxx∈Γ |f(x)|. The point-wise approximation error of a sparse grid is bounded by

‖f −GΘ[f]‖C0(Γ) ≤
(
1 + ‖GΘ‖C0(Γ)

)
inf

p∈PΛm(Θ)

‖f − p‖C0(Γ), (18)

where ‖GΘ‖C0(Γ) is the operator norm of GΘ (also called the Lebesgue constant)

‖GΘ‖C0(Γ) = sup
g∈C0(Γ)

‖GΘ[g]‖C0(Γ)

‖g‖C0(Γ)
= max

x∈Γ

∑
j∈X(Θ)

|ψj(x)|.

For the nested case ψj(x) are defined in (12) and (14), and for the non-nested case ψij(x) are defined in
(15) with the repeated points grouped together. The error in quadrature approximation is bounded as∣∣∣∣∫

Γ
f(x)ρ(x)dx−GΘ[f]

∣∣∣∣ ≤
∫

Γ
ρ(x)dx+

∑
j∈X(Θ)

|wj |

 inf
p∈PΛq(Θ)

‖f − p‖C0(Γ), (19)

and for the non-nested case the sum becomes
∑

(i,j)∈X(Θ) |tiwij | where weights corresponding to the same
points are grouped together before taking the absolute value. Note, even if the one dimensional rule inducing
the sparse grid has positive quadrature weights, since ti can be negative, some of wj can be negative.

The classical approach for sparse grids construction is to pre-define Θ according to some formula. Let
ξ,η ∈ Rd be anisotropic weight vectors such that ξk > 0 for all 1 ≤ k ≤ d, and let L indicate the “level”
of the sparse grid approximation (the word “level” here is used loosely as the value of L has meaning only
relative to ξ). The classical anisotropic case takes

Θξ(L) = {i ∈ Nd : ξ · i ≤ L}†, (20)

log-corrected or curved selection[46]

Θξ,η(L) = {i ∈ Nd : ξ · i+ η · log(i+ 1) ≤ L}‡, (21)

∗as withm(i) we take q(i) =
⊗d

k=1 q(ik)
†Here · indicates the standard vector dot product i · j =

∑d
k=1 ikjk.

‡Here log(i) =
⊗d

k=1 log(ik)

7

hyperbolic cross section
Θξ(L) = {i ∈ Nd : (i+ 1)ξ ≤ L}. (22)

Alternatively, the multi-index set Θ can be selected as the smallest lower set that results in a Λm(Θ) (or
Λq(Θ)) that includes a desired polynomial space (see [46] for details). Total degree space

{j ∈ Nd : ξ · j ≤ L} ⊂ Λm(Θ), ⇒ Θξ,m(L) = {i ∈ Nd : ξ ·m(i− 1) ≤ L}∗, (23)

or using a log-correction

{j ∈ Nd : ξ · j + η · log(j + 1) ≤ L} ⊂ Λm(Θ), ⇒
Θξ,η,m(L) = {i ∈ Nd : ξ ·m(i− 1) + η · log(m(i− 1) + 1) ≤ L}, (24)

or hyperbolic cross section space

{j ∈ Nd : (j + 1)ξ ≤ L} ⊂ Λm(Θ), ⇒ Θξ,m(L) = {i ∈ Nd : (m(i− 1) + 1)ξ ≤ L}. (25)

Tensor selection types (23), (24) and (25) target corresponding polynomial spaces associated with point-wise
approximation, the corresponding quadrature formulas use q in place of m, i.e., for total degree space

{j ∈ Nd : ξ · j ≤ L} ⊂ Λq(Θ), ⇒ Θξ,m(L) = {i ∈ Nd : ξ · q(i− 1) + 1 ≤ L}†, (26)

or using a log-correction

{j ∈ Nd : ξ · j + η · log(j + 1) ≤ L} ⊂ Λq(Θ), ⇒
Θξ,η,q(L) = {i ∈ Nd : ξ · (q(i− 1) + 1) + η · log(q(i− 1) + 2) ≤ L}, (27)

or hyperbolic cross section space

{j ∈ Nd : (j + 1)ξ ≤ L} ⊂ Λq(Θ), ⇒ Θξ,m(L) = {i ∈ Nd : (q(i− 1) + 1)ξ ≤ L}. (28)

For example, Θ1,q(L) constructed according to (26) will result in GΘ1,q(L) that integrates exactly all poly-

nomials of total degree up to and including L. Similarly, Θ1,−1
2
,m(L) will result in the dominant polynomial

space defined in Proposition 8 and equation (8) in [5]. For more information about optimal and quasi-optimal
polynomial approximation see [46] and references therein.

2.3 Global Grids: Sequence Grid

A sequence grid is constructed from a one dimensional nested rule with m(l) = l + 1. The theoretical
properties, i.e., (18) and (19), are identical to the global grid, however, the sequence grid uses representation
in terms of Newton (as opposed to Lagrange) polynomials. Let

φ1(x) = 1, for j > 1, φj(x) =

j−1∏
i=1

x− xi
xj − xi

, and for j ∈ Nd, φj(x) =

d∏
k=1

φjk ,

∗Here for notational convenience we assume that m(−1) = 0.
†Here for notational convenience we assume that q(−1) = −1.

8

where each φjk is evaluated at the corresponding k-th component of x. Then GΘ[f] can be written as

G[f](x) =
∑

j∈X(Θ)

sjφj(x), (29)

where the surplus coefficients sj satisfy the linear system of equation∑
1≤j≤i

sjφj(xi) = f(xi), for every i ∈ X(Θ). (30)

Note that all sparse grids induced by nested one dimensional rules can be written in the Newton form above,
but Tasmanian implements sequence grids only for the case when m(l) = l + 1.

Computing and storing the coefficients sj is more expensive then the weights ti, especially when f(x)
is a vector valued function where each output dimension of f(x) requires a separate set of coefficients.
However, computing the surpluses is a one time cost, followup evaluations of a sequence approximation are
much cheaper since Newton polynomials are easier to construct. Thus, sequence grids are faster when a
large number of evaluations of GΘ[f] are desired.

2.4 Global Grids: Refinement

Global and sequence grids implemented in Tasmanian support two types of refinement based on surpluses
and anisotropic coefficient decay. Given GΘ[f] for some index set Θ, the goal of a refinement procedure is
to produce an updated Θ̂ (with Θ ⊂ Θ̂) such thatGΘ̂[f] is more accurate and the additional indexes included
in Θ̂ are “optimal” with respect to properties of f(x) that are “inferred” from GΘ[f]. Note that refinement
is supported only for grids induced by nested rules.

The surplus refinement is implemented only for grids induced by rules with m(l) = l + 1 (sequence and
global grids alike). In that case X(Θ) = Θ + 1 and the refinement strategy considers the hierarchical
surpluses (30). The set Θ is then expanded with indexes that are “close” to the indexes associated with large
relative surpluses. Specifically:

Θ̂ = Θ
⋃ ⋃

j∈X(Θ),|sj |>ε·fmax

{
i ∈ Nd :

d∑
k=1

|ik − jk − 1| = 1

} , (31)

where fmax = maxj∈X(Θ) |f(xj)| and ε > 0 is user specified tolerance. In the case when f(x) has multiple
outputs, if using a global grids (i.e., with Lagrange representation) then the user must specify one output to
be used by the refinement criteria. The surpluses and fmax will be computed only for that one output. In
contrast, a sequence grid computes and stores the surpluses for all outputs, thus, refinement can be easily
done with either one output or all outputs simultaneously, in which case we refine for those j ∈ X(Θ) such
that |sj | > ε · fmax for any of the outputs. Here the purpose of the fmax is used to normalize the surpluses
in case a vector valued function has outputs with significantly different scaling.

The second type of refinement is labeled anisotropic, and it is a two stage process. First, GΘ[f] is expresses
in terms of orthogonal multivariate Legendre polynomials, then anisotropic weights ξ and η are inferred
from the decay rate of the coefficients. The refinement set Θ̂ is constructed according to (23) or (24) so
that GΘ̂ includes a desired minimum number of new points, where the minimum number of new points

9

exploits parallelism in computing the values of f(xj). Legendre expansion is computationally expensive,
hence grids induced by rules with growth m(l) = l + 1 use hierarchical surpluses in place of the Legendre
coefficients. As before, when f(x) has multiple outputs, sequence and global grids can focus on a single
output, and sequence grids can considers the largest normalized surplus, i.e., largest |sj |/fmax among all
outputs. For more details on this type of refinement, see [46].

2.5 Global Grids: One dimensional rules

2.5.1 Chebyshev rules

Roots and extrema of Chebyshev polynomials are a common choice of one dimensional interpolation and
integration rules and Tasmanian implements several Chebyshev based rules. The non-nested Chebyshev
points are placed at the roots of the polynomials and the growth is eitherm(l) = l+1 orm(l) = 2l+1. The
Clenshaw-Curtis[10] and Clenshaw-Curtis-zero (latter assumes the f(x) is zero at ∂Γ) use only the nested
Chebyshev points and m(l) grows exponentially. The nested Fejer type 2[14] points use the extrema of the
Chebyshev polynomials and also have exponential m(l).

In addition, the library includes the more recently developedR-Leja points[8]. Define {θj}∞j=1 as

θ1 = 0, θ2 = π, θ3 =
π

2
, for j > 3, θj =

{
θj−1 + π, j is odd
1
2θ j

2
+1, j is even (32)

then the R-Leja points are given by xj = cos(θj) and the centered R-Leja points start at x1 = 0, x2 = 1,
x3 = −1, and xj = cos(θj) for j > 3. The growth of theR-Leja rule is m(l) = l + 1 and the centered rule
allows for multiple definitions, namely odd rules m(l) = 2l + 1, theR-Leja double-2 growth defined by

m(0) = 1, m(1) = 3, for l > 1, m(l) = 2b
l
2
c+1

(
1 +

l

2
−
⌊ l

2

⌋)
+ 1, (33)

and theR-Leja double-4 rule defined by

m(l) = 1, m(l) = 3, for l > 1, m(l) = 2b
l−2
4
c+2

(
1 +

l − 2

4
−
⌊ l − 2

4

⌋)
+ 1, (34)

where bxc = max{z ∈ Z : z ≤ x} is the floor function, see [46] for more details.

Tasmanian also includes a shiftedR-Leja sequence defined by

x1 = −1

2
, x2 =

1

2
, for j > 2, xj =

{ √
1+x(j+1)/2

2 , j is odd
−xj−1, j is even

(35)

which comes with growth m(l) = l + 1 or m(l) = 2(l + 1). Table 1, summarizes all Chebyshev rules.

2.5.2 Gauss rules

The roots of orthogonal polynomials are a common choice for points for numerical integration due to the
high level of precision. Orthogonality is defined with respect to a specific integration weight that often

10

Points m(l) q(l) Note:
Chebyshev:

m(l) = l + 1 q(l) = l − 1 + (l mod 2)
very low

Non-nested Chebyshev roots Lebesgue constant
Clenshaw-Curtis:

m(0) = 1, m(l) = 2l + 1 q(l) = m(l)
very low

Nested Chebyshev roots Lebesgue constant
Clenshaw-Curtis-Zero:

m(l) = 2l+1 − 1 q(l) = 2l
assumes

Nested Chebyshev roots f(x) = 0 at ∂Γ

Fejer type 2:
m(l) = 2l+1 − 1 q(l) = 2l no points at ∂ΓNested Chebyshev extrema

R-Leja:
m(l) = l + 1 q(l) = l − 1 + (l mod 2) see [8, 46]See (32)

R-Leja odd:
m(l) = 2l + 1 q(l) = m(l) see [8, 46]CenteredR-Leja

R-Leja double 2: see (33) q(l) = m(l) see [8, 46]CenteredR-Leja
R-Leja double 4: see (34) q(l) = m(l) see [8, 46]CenteredR-Leja
R-Leja shifted:

m(l) = l + 1 q(l) = m(l)− 1 see [9]See (35)
R-Leja shifted even:

m(l) = 2(l + 1) q(l) = 2l + 1 see [9]See (35)

Table 1. Summary of the available Chebyshev rules.

times requires additional parameters α and/or β. The Gauss rules also include the Hermite and Laguerre
polynomials that assume unbounded domain. Gauss rules are usually non-nested, have growthm(l) = l+1,
and precision q(l) = 2l + 1. Odd versions of the rules use growth m(l) = 2l + 1 and q(l) = 4l + 1, and
when coupled with qpcurved or qptotal tensor selection the odd versions of the Gauss rules usually result in
sparse grids with fewer points.

Gauss-Patterson[37] points are a notable exception in most ways. The Patterson construction uses the Leg-
endre orthogonal polynomials and imposes the additional requirement that the points are nested, which
leads to a rule with growth m(l) = 2l+1 − 1 and precision q(l) = 3

2m(l) − 1
2 = 3 · 2l − 2. Note that the

construction of the Gauss-Patterson points and weights is a computationally expensive and ill-conditioned
problem, Tasmanian does not include code that computes the point and weight, instead the first 9 levels are
hard-coded into the library. The 9 levels should give sufficient precision for most applications, while the
custom rule capabilities of the library can be used to extend beyond that limit, assuming the user provides
Gauss-Patterson points and weights for higher levels. Summary of all Gauss rules is listed in Table 2.

2.5.3 Greedy rules

Tasmanian implements a number of rules using sequences of points that are based on greedy optimization.
The most well known rule uses the Leja points[11], where

x1 = 0, for j > 1 xj+1 = argmax
x∈[−1,1]

j∏
i=1

∣∣x− xi∣∣. (36)

11

Name Generalized NotesIntegral

Gauss-Patterson:
∫ b
a
f(x)dx

The only nested rule
Canonical: a = −1, b = 1

Gauss-Legendre:
∫ b
a
f(x)dx

Highest 1-D exactness
Canonical: a = −1, b = 1

Gauss-Chebyshev type 1:
∫ b
a
f(x)(b− x)−0.5(x− a)−0.5dx Canonical: a = −1, b = 1

Gauss-Chebyshev type 2:
∫ b
a
f(x)(b− x)0.5(x− a)0.5dx Canonical: a = −1, b = 1

Gauss-Gegenbauer:
∫ b
a
f(x)(b− x)α(x− a)αdx

Must specify α
Canonical: a = −1, b = 1

Gauss-Jacobi:
∫ b
a
f(x)(b− x)α(x− a)βdx

Must specify α, β
Canonical: a = −1, b = 1

Gauss-Laguerre:
∫∞
a
f(x)(x− a)αe−b(x−a)dx

Must specify α
Canonical: a = 0, b = 1

Gauss-Hermite:
∫∞
−∞ f(x)(x− a)αe−b(x−a)

2

dx
Must specify α

Canonical: a = 0, b = 1

Table 2. Summary of the available Gauss rules.

Similar construction can be done using the extrema of the Lebesgue function

x1 = 0, for j > 1 xj+1 = argmax
x∈[−1,1]

j∑
j′=1

j∏
i=1,i 6=j′

∣∣∣ x− xi
xj′ − xi

∣∣∣. (37)

We can greedily minimize the norm of Um(j+1), where x1 = 0 and for j > 1

xj+1 = argmin
x∈[−1,1]

max
y∈[−1,1]

j∏
i=1

∣∣∣y − xi
x− xi

∣∣∣+

j∑
j′=1

∣∣∣ y − x
xj′ − x

∣∣∣ j∏
i=1,i 6=j′

∣∣∣ y − xi
xj′ − xi

∣∣∣ (38)

or minimizing the norm of the surplus operator ∆m(j+1), where x1 = 0 and for j > 1

xj+1 = argmin
x∈[−1,1]

max
y∈[−1,1]

1 +

j∑
i=1

j∏
j′=1,j′ 6=i

∣∣∣ x− xj′
xi − xj′

∣∣∣
 j∏

j′=1

∣∣∣y − xj′
x− xj′

∣∣∣. (39)

In all cases the growth can be set to m(l) = l+ 1 or m(l) = 2l+ 1. However, unlike theR-Leja points, the
odd rules here do not result in symmetric distribution of the points, hence q(l) = m(l)− 1 (and q(0) = 1).
For a numerical survey of the properties of interpolants constructed from the above sequences, see [46].
Note that quadrature rules using the above sequences can potentially result in zero weights (i.e., wj = 0 for
some j), Tasmanian does NOT automatically check if the weights are zero. The greedy rules are intended
for interpolation purposes and are not the best rules to use for numerical integration. A list of the greedy
rules is given in Table 3.

12

Name Points m(l)

Leja:
See (36)

m(l) = l + 1
Leja odd: m(l) = 2l + 1

Max-Lebesgue:
See (37)

m(l) = l + 1
Max-Lebesgue odd: m(l) = 2l + 1

Min-Lebesgue:
See (38)

m(l) = l + 1
Min-Lebesgue odd: m(l) = 2l + 1

Min-Delta:
See (39)

m(l) = l + 1
Min-Delta odd: m(l) = 2l + 1

Table 3. Summary of the available greedy sequence rules.

2.6 Fourier Grids

For cases where the interpolant of f(x) must be periodic in derivatives as well as function values, Tasmanian
implements sparse interpolation with a Fourier basis, for more details see [20, 24, 42]. The one-dimensional
(nested) rule assumes a canonical domain of [0, 1] with the nodes

x1 = 0, xj =

⌊
3
2

(
j − 1− 3blog3(j−1)c)⌋

3blog3(j−1)+1c , for j > 1.

Note that each level contains 3l nodes, which allows us to preserve the nested structure, have levels with
complete exponent (see below) and use radix-3 Fast-Fourier-Transform (FFT) algorithm. We define the
exponential functions

φj(x) = exp
(
2πIx(−1)j+1bj/2c

)
,

where I is the unit complex number, i.e., I2 = −1. The interpolant is real values, which means that the
effective basis functions at level l are{

cos(2πωx), sin(2πωx) : ω ∈ Z, |ω| ≤ 3l − 1

2

}
,

and the coefficients of the basis functions are computed using FFT.

Let f : [0, 1]→ R and consider the 1-D Fourier interpolant at level l, i.e., the interpolant U3l [f](x) matching
f(x) at nodes xs for s ≤ 3l. The interpolant is given by

U3l [f](x) =
3l∑
j=1

<
(
f̂jφj(x)

)
where < indicates the real part of a number and f̂j is a special reordering of the discrete Fourier coefficients
of reordered sequence f(xj) (i.e., the index has to be reordered twice). First, we define fi = f(xs) such
that for i = 1, 2, · · · , 3l the corresponding xs values are in ascending order, i.e., we fi are the function
values reordered in domain space according to xs. Second, we take the discrete Fourier transform (using
FFT algorithm) and obtain Fourier coefficients f̂i. Finally, the Fourier coefficients are reordered again to
match the basis, i.e.,

f̂j = f̂i, where i =

{
bj/2c, (−1)j < 0,
3l − bj/2c, (−1)j > 0.

13

Internally, Tasmanian implements the re-indexing inline with negligible overhead, but it is noteworthy that
there is no strong connection between the coefficient associated with φj(x) and the spacial node xj , i.e.,
unlike other types of grids, the coefficient cannot be interpreted as hierarchical surplus.

Extending the one dimensional interpolant to multidimensional context is done analogously to the sparse
grids construction with Global rules. We define

xj =
d⊗

k=1

xjk , φj(x) =
d∏

k=1

φjk , U i =
d⊗

k=1

U3ik ,

and a sparse interpolant
GΘ[f](x) =

∑
i∈Θ

tiU i[f](x),

where Θ is some lower set and the weights ti are the same as in (11).

The function space follows logic similar to that of Global grids with trigonometric frequency in place of
polynomial order. The theoretical results for the target polynomial space are similar, i.e., functions of finite
differentiability require hyperbolic-cross-section space, while analytic functions use total degree space. One
note is that a single trigonometric frequency (greater than 0), requires two points and two basis functions
to capture both sin(·) and cos(·) components. This relation is handled automatically when building the
grid with types type iptotal and type iphyperbolic, i.e., Tasmanian automatically uses the correct
interpretation. Finally, adaptive refinement can be performed in the Fourier context in the same way as
Global grids[32].

2.7 Local Polynomial Grids: Hierarchical interpolation rule

Local polynomial grids are constructed from equidistant points and use functions with support restricted to
a neighborhood of each point. The local support of the functions allow the employment of locally adaptive
strategies and thus local grids are suitable for approximating functions with sharp behavior, e.g., large fluc-
tuation of the gradient. Similar to the global grids, local grids are constructed from tensors of points and
functions in one dimension. In contrast to global grids, local grids use functions with local support and very
strict hierarchy. For in depth analysis of the properties of the local grids see [19, 31, 30, 43].

Let {xj}∞j=0 ∈ [−1, 1] be a sequence of nodes (w.l.o.g., we assume that we are working on the canonical
domain [−1, 1]) and let {∆xj}∞j=0 indicate the “resolution” of our approximation at point xj , i.e., the support
of the associated function. In addition, we have the hierarchy defined by the parents and children sets

Pj = {i ∈ N : xi is a parent of xj},
Oj = {i ∈ N : xi is a child (offspring) of xj},

where Pj can have more than one element. For a particular example of such hierarchies, see Section 2.9.
We assume that Pj and Oj define a partial order of the points and let h : N → N map each point to a place
in the hierarchy also called level, i.e.,

h(j) =

{
0, Pj = ∅
h(i) + 1, for any i ∈ Pj

14

We define the ancestry set Aj

Aj = {i ∈ N : h(i) ≤ h(j) and (xi −∆xi, xi + ∆xi) ∩ (xj −∆xj , xj + ∆xj) 6= ∅}

In order to construct the basis functions, for each xj we consider the set of p nearest ancestors

F
(p)
j = argmin

F⊂Aj ,#F=p

∑
i∈F
|xi − xj |,

where #F indicates the number of elements of F . Note that F (p)
j is defined only for p ≤ #Aj .

The functions associated with a hierarchy can have various polynomial order p ≥ 0. For constant functions

φ
(0)
j (x) =

{
1, x ∈ (xj −∆xj , xj + ∆xj)
0, x 6∈ (xj −∆xj , xj + ∆xj)

For linear functions

φ
(1)
j (x) =

{
1− |x−xj |∆xj

x ∈ (xj −∆xj , xj + ∆xj)

0, x 6∈ (xj −∆xj , xj + ∆xj)

and functions of arbitrary order p > 1

φ
(p)
j (x) =

{ ∏
i∈F (p)

j

x−xi
xj−xi , x ∈ (xj −∆xj , xj + ∆xj)

0, x 6∈ (xj −∆xj , xj + ∆xj)

Note that a function can have order p only if the corresponding F
(p)
j exists, i.e., h(j) is large enough.

Tasmanian constructs local polynomial grids by automatically using the largest p available for each φ(p)
j (x),

optionally the library can be restricted p to a maximum user defined value. In the rest of this discussion, we
would omit p.

We extend the one dimensional hierarchy to a d-dimensional context using multi-index notation∗

xj =
d⊗

k=1

xjk , φj(x) =
∏

φjk , supp{φj(x)} =
d⊗

k=1

(xjk −∆xjk , xjk + ∆xjk),

where each
∏
φjk is evaluated at the corresponding k-th entry of x and supp{φj(x)} indicate the support

of φj(x). Parents and children are associated with different directions

P
(k)
j = {i ∈ Nd : i =

k
j† and ik ∈ Pjk} O

(k)
j = {i ∈ Nd : i =

k
j and ik ∈ Ojk}

and the level of a multi-index is h(j) =
∑d

k=1 h(jk). The multidimensional ancestry set is

Aj =
{
i ∈ Nd : h(i) ≤ h(j) and supp{φi(x)}

⋂
supp{φj(x)} 6= ∅

}
∗Similar to the global grids, N indicates the set of non-negative integers, and W,F,A, P,O,B,X ⊂ Nd denote sets of multi-

indexes.
†Here by i =

k
j we mean that i and j have the same components in all but the k-th direction

15

For f : Γ→ R, a multi-dimensional interpolant of f(x) is defined by a set of points X so that

GX [f] =
∑
j∈X

sjφj(x),

where the surplus coefficients sj are chosen such that GX [f](xi) = f(xi) for all i ∈ X , specifically, by
definition of φj(x)

sj = f(xj)−
∑
i∈Aj

siφi(xj). (40)

In the case when f(x) is a vector valued function, a separate set of surplus coefficients is computed for each
output. When Tasmanian first creates a local polynomial grid, the set of points is chosen so that

X = {j ∈ Nd : h(j) ≤ L}, (41)

for some use specified L.

2.8 Local Polynomial Grids: Adaptive refinement

Locally adaptive grids are best utilized with an appropriate refinement strategy. Suppose we have con-
structed GX [f] for some X and consider an updated X̂ so that new points are added only in the region of
Γ where GX [f] sharply deviates from f(x). The surpluses sj are a good local error indicator, and thus we
define X̂ that contains only indexes that are parents or children of indexes j associated with large sj .

First, we define the set of large surpluses

B =

{
j ∈ X :

|sj |
fmax

> ε

}
,

where ε > 0 is desired tolerance and fmax = maxi∈X |f(xi)|. When f(x) is a vector valued function, an
index j is included in B if any of the outputs has normalized surpluses larger than ε. Tasmanian implements
4 different refinement strategies, where X̂ is selected by including parents and/or children of j ∈ B in
different directions. This is done based on consideration of “orphan” directions and directional surpluses.

For each index in j, we define the “orphan” directions

Tj =
{
k ∈ {1, 2, . . . , d} : P

(k)
j 6⊂ X

}
,

thus, Tj contains the directions where we have missing parents. We also consider directional surpluses, let

W
(k)
j =

{
i ∈ X : i =

k
j

}
, G

W
(k)
j

[f] =
∑
i∈W (k)

j

c
(k)
i φi(x),

where we have a set of the one directional surpluses c(k)
i associated with each index j, however, we focus

our attention only to c(k)
j . The set of large one directional surpluses is

Cj =

k ∈ {1, 2, . . . , d} :

∣∣∣c(k)
j

∣∣∣
fmax

> ε

 .

16

The classical refinement strategy constructs X̂ by adding the children of j ∈ B, i.e.,

X̂ = X
⋃⋃

j∈B

⋃
k∈{1,2,...,d}

O
(k)
j

 . (42)

However, the classical strategy can lead to instability around orphan points, hence, the parents-first approach
adds parents before the children

X̂ = X
⋃⋃

j∈B

 ⋃
k∈Tj

P
(k)
j

⋃ ⋃
k 6∈Tj

O
(k)
j

 . (43)

Large surplus signifies large local error, however, refinement doesn’t have to be done in all directions, thus,
the directional refinement uses k ∈ Cj , i.e.,

X̂ = X
⋃⋃

j∈B

⋃
k∈Cj

O
(k)
j

 . (44)

Combining the parents-first and directional approach leads to the family-direction-selective (FDS) method

X̂ = X
⋃⋃

j∈B

 ⋃
k∈Cj∩Tj

P
(k)
j

⋃ ⋃
k∈Cj\Tj

O
(k)
j

 . (45)

For more details about the four refinement strategies see [43].

2.9 Local Polynomial Grids: One dimensional rules

Tasmanian implements three specific one dimensional hierarchical rules: standard rule with ∆xj decreasing
by 2 at each level, a semi-local rule where global basis is used for levels 0 and 1, and a modified rule that
assumes f(x) = 0 at ∂Γ.

The standard local rule is given by

x0 = 0, x1 = −1, x2 = 1, for j > 2 xj = (2j − 1)× 2−blog2(j−1)c − 3, (46)

where bxc = max{z ∈ Z : z ≤ x} is the floor function. The parent sets are

P0 = ∅, P1 = {0}, P2 = {0}, P3 = {1}, for j > 3 Pj =

{⌊
j + 1

2

⌋}
,

and the offspring sets are

O0 = {1, 2}, O1 = {3}, O2 = {4}, for j > 2 Oj = {2j − 1, 2j} .

The level function is

h(j) =


0, j = 0,
1, j = 1,
blog2(j − 1)c+ 1, j > 1,

17

X0 X0 X0

X1 X2 X1 X2 X1 X2

X3 X4 X3 X4 X3 X4

X5 X6 X7 X8 X5 X6 X7 X8 X5 X6 X7 X8

Figure 1. Local polynomial points (rule localp) and functions, left to right: linear, quadratic, and
cubic functions.

18

X0 X0 X0

X1 X2 X1 X2 X1 X2

X3 X4 X3 X4 X3 X4

X5 X6 X7 X8 X5 X6 X7 X8 X5 X6 X7 X8

Figure 2. Semi-local polynomial points (rule semilocalp) and functions, left to right: linear, quadratic,
and cubic functions.

and the resolution ∆xj is given by ∆x0 = 1 and for j > 0 we have ∆xj = 2−h(j)+1. Figure 1 shows the
first four levels of the linear, quadratic, and cubic functions.

A modification to the standard rule uses the same points, however, functions at level l = 1 with degree
higher than linear will have global support, i.e., if p > 1 then ∆x1 = ∆x2 = 2. In addition, for the purpose
of parents refinement (43) and (45) we use P3 = P4 = {1, 2}. The modified rule sacrifices resolution and
gains higher polynomial order, thus, the semi-local approach is better suited for functions with “smoother”
behavior. Figure 2 shows the linear, quadratic, and cubic semi-local functions. Note: there is no difference
between the linear versions of the local and semi-local rules.

An alternative local rule does not put points on the boundary and implicitly assumes that f(x) = 0 at ∂Γ.
The hierarchy is defined as

x0 = 0, for j > 0 xj = (2j + 3)× 2−blog2(j+1)c − 3, (47)

The parent sets are

P0 = ∅, for j > 0 Pj =

{⌊
j − 1

2

⌋}
,

and the offspring sets are Oj = {2j + 1, 2j + 2}. The level function is h(j) = blog2(j + 1)c and the

19

X0 X0 X0

X1 X2 X1 X2 X1 X2

X3 X4 X5 X6 X3 X4 X5 X6 X3 X4 X5 X6

Figure 3. Semi-local polynomial points (rule localp0) and functions, left to right: linear, quadratic,
and cubic functions.

resolution ∆xj is given by ∆x0 = 2−h(j). Figure 3 shows the first three levels of the linear, quadratic, and
cubic functions.

A rule with piece-wise constant (and discontinuous) basis is also provided within Tasmanian. Figure 4
shows the first four levels and the associated parents-offspring relations, see [44] for details.

20

X0

X1 X2

X3 X4 X5 X6 X7 X8

X9 X10X11 X12X13 X14X15 X16X17 X18X19 X20X21 X22X23 X24X25 X26

Figure 4. Semi-local polynomial points (rule localp) rule with order 0.

2.10 Wavelets

Tasmanian, in addition to the local polynomial rules, also implements wavelet rules with order 1 and 3. The
hierarchy followed by the wavelets as well as the refinement strategies are very similar to the local grids.
The differences are as follows:

• The zeroth levels of wavelet rules of order 1 and 3, have 3 and 5 points respectively. This is a sharp
contrast to the single point of of the polynomial rules, since level 0 wavelet grid has 3d (or 5d) points
in d-dimensions (as opposed to a single point). See Figure 5.

• Wavelet rules have larger Lebesgue constant, which is due to the large magnitude of the boundary
wavelet functions. This can lead to instability of the wavelet interpolant around the boundary of the
domain.

• The linear system of equations associated with the wavelet surpluses is not triangular, hence a sparse
matrix has to be inverted every time values are loaded into the interpolant. This leads to a signifi-
cantly higher computational cost in manipulating the wavelet grids, especially in loading values and
performing direction selective refinement.

• Wavelets form a Riesz basis, which over-simplistically means that the wavelet surpluses are much
sharper indicators of the local error and hence wavelet based refinement strategy “could” generate a
grid that is more accurate and has fewer points. The quotations around the word “could” relate to the
point about the Lebesgue constant.

• For more details about wavelets, see [19, 22, 48].

21

−1 0 1

0

1

X
0

X
1

X
2

−1 0 1

0

1

X
0

X
1

X
2

X
3

X
4

−1 0 1

0

1

X
3

X
4

−1 0 1

0

1

X
5

X
6

X
7

X
8

−1 0 1

0

1

X
5

X
6

X
7

X
8

−1 0 1

0

1

X
9

X
10

X
11

X
12

X
13

X
14

X
15

X
16

Figure 5. The first three levels for wavelets of order 1 (left) and 3 (right). The functions associated
with x13, x14, x15, and x16 are purposely omitted to reduce the clutter on the plot, since the funcitons
are mirror images of the those associated with x12, x11, x10, and x9 respectively.

22

2.11 Domain Transformation

Sparse grids are build on canonical 1D domain [−1, 1], with the exception of Gauss-Laguerre and Gauss-
Hermite rules that use [0,∞) and (−∞,∞) respectively. Linear transformation can be applied to translate
[−1, 1] to an arbitrary interval [a, b], for unbounded domain we can apply shift a and scaling b. This simple
linear transformation will not affect the properties of the grid, i.e., function space spanned by the basis or
the Lebesgue constant. Thus, the a and b parameters are used to simplify implementation and generate a
grid on a domain consistent with the range of the input of an arbitrary function f(x). However, non-linear
transformation can also be used with the goal of accelerating convergence.

2.11.1 Conformal Map

For simplicity, assume that f(x) is a one dimensional function defined on [−1, 1]. Then a conformal map is
any monotonic strictly increasing g(x) such that

g : [−1, 1]→ [−1, 1], g(−1) = −1, and g(1) = 1,

Then, instead of constructing a sparse grids rule that integrates or interpolates f(x), we construct a rule for
f(g(x)), with the hope that the composed function will be easier to approximate, e.g., have larger region of
analyticity[28, 2].

In case of a quadrature rule, we note that∫
f(x)dx =

∫
f(g(x))g′(x)dx,

thus if we have a quadrature rule
∫
f(g(x))dx ≈

∑
i∈X(θ) ωif(g(xi)), then∫

f(x)dx ≈
∑
i∈X(θ)

ωig
′(xi)f(g(xi)) =

∑
i∈X(θ)

ω̂if(x̂i).

The transformed quadrature nodes are x̂i = g(xi) and the corresponding quadrature weights are ω̂i =
ωig
′(xi). Similarly, if Gθ[f ◦ g](x) ≈ f(g(x)), then

f(x) = f(g(g−1(x))) ≈ Gθ[f ◦ g](g−1(x)),

and the sparse grids nodes associated with f(x) are again x̂i = g(xi). Note, in the interpolation case
the function basis used to approximate f(x) is a composition between the standard basis (polynomials or
wavelets) and g−1(x).

Appropriate choice of g(x) can significantly accelerate convergence, but a wrong choice can severely dete-
riorate accuracy. As an experimental feature, Tasmanian allows for non-linear transformation of the integra-
tion/interpolation domain with g(x) based on the truncated Maclaurin series of arcsin(x). Different degree
of truncation can be chosen in each direction and conformal mapping can be composed with standard linear
a-b transformation to obtain optimal rule over any arbitrary domain. Note: this feature will not work with
unbounded rules, such as Gauss-Laguerre and Gauss-Hermite.

23

2.12 Alternative coefficient construction

The sparse grids approximation can be generalized as

GΘ[f](x) =
n∑
i=j

cjφj(x),

where cj is a set of scalar or vector coefficients depending whether f(x) has scalar or vector output, and
φj is a set basis functions. The approximation is related to the best fit of f(x) in the span of φj(x) with a
penalty constant (e.g., Lebesgue constant). Here, for simplicity, we suppress the multi-index notation and
assume linear ordering of the nodes and basis functions. In the standard SG algorithms, the n coefficients cj
are derived from n samples of f(xj) collected at specially chosen nodes xj . The choice of xj is performed
in a way that minimizes the penalty, but it also leads to a significant drawback, i.e., the target function f(x)
must be evaluated at exactly the selected set of nodes. In some applications, this is either impractical or even
infeasible, e.g., the domain of f(x) is not a hypercube but rather a blob of some shape contained within a
hypercube. In order to utilize the flexible function spaces associated with sparse grids and in order to take
advantage of the advanced adaptive approximation algorithms, a different approach is needed to construct
cj from an arbitrary set of realizations of f(x).

Let {f(si)}mi=1 indicate m samples of f(x) for an arbitrary set of sample points si, where for simplicity we
assume that f(x) is scalar valued. Define the basis matrix A and data vector f

A = {ai,j} ∈ Rm×n, where ai,j = φj(si), f = {fi}, where fi = f(si).

Similarly, we can arrange the coefficients cj in a vector c, and we seek c such that

Ac = f . (48)

In the case of standard sparse grids construction with a nested rule, (48) has exact solution, i.e., either c = f
for global grids or c are the hierarchical coefficients of the sequence or local grids. In the case of non-nested
grids, the coefficients c have a more complex nature and (48) is not satisfied for all rows, but the “solution”
c is found according to the direct sum of tensors formula. In the general case, when the samples come from
an arbitrary set, an exact solution cannot be found and since m 6= n the system of equations is either under
or over determined.

24

3 Random Sampling

3.1 DREAM: General algorithm

Let Γ ⊂ Rd and ρ : Γ→ R+ be a non-negative function with∫
Γ
ρ(x)dx <∞,

then scaling ρ(x) gives us a probability density function and the goal of the random sampling algorithm is
to generate points {xi} with the said distributions.

Standard Metropolis-Hastings algorithm creates a chain of samples, by iteratively proposing a new sample
followed by an accept/reject test. In short, given xi, we obtain a random perturbation gi (with distribution
symmetric around 0) and we set

xi+1 =

{
xi + gi,

ρ(xi+gi)
ρ(xi)

≥ ui,
xi othwerwise,

where ui is a random sample from uniform distribution over [0, 1]. Regardless of the initial x0, in the limit
as i → ∞, the distribution of xi matches the one defined by the pdf ρ(x). In practice, a finite set of xi are
computed and an initial batch of samples is discarded (a process called the burn-up).

The DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm simultaneously evolves a number of
chains and the probability distribution for the correction is informed by all samples in the chain. Specifically,
the chain state is

{x1,i, x2,i, . . . , xC,i},
where C is the total number of chains. Each chain is updated according to the accept/reject criteria

xc,i+1 =

{
xc,i + gc,i,

ρ(xi+gc,i)
ρ(xi)

≥ ui,
xc,i othwerwise.

(49)

The updates are chosen as
gc,i = γ(xc1,i − xc2,i) + rc,i, (50)

where c1 and c2 are random integers in the range [1, C], γ is a jump scale constant (usually in [0, 1]), and
rc,i is a small correction sampled from a distribution that is symmetric around 0. The on-line manual refers
to γ and rc,i as the differential and independent updates.

Compared to the standard Metropolis-Hastings method, the DREAM algorithm has several practical advan-
tages

• Using a large number of chains allows better initial coverage of Γ, which limits the dependence on
the initial guess.

• The proposal is constantly updated based on the current chain state, which accelerates convergence.

• In the single chain algorithm, once the state reaches a high-probability regions, it is very unlikely that
the chain would jump out of that region and reach a second one. Thus, Metropolis-Hastings struggles
when dealing with multi-modal distributions. In contrast, when DREAM uses a sufficiently large
number of chains some chains will reach every high probability region.

25

Distribution Domain Density Defining parameters

Uniform [a, b] 1
b−a a, b

Gaussian (−∞,∞) 1√
2πσ

exp
(
− 1

2σ (x− µ)2
)

σ, µ

Truncated Gaussian [a, b] exp(− 1
2σ

(x−µ)2)
C̃

σ, µ, a, b

Exponential [a,∞) λ exp (−λ(x− a)) λ, a

Beta [a, b] Γ(α+β)
Γ(α)Γ(β)

(x−a)α−1(b−x)β−1

(b−a)α+β−2 a, b, α, β

Gamma [a,∞) βα

Γ(α)x
α−1 exp (−β(x− a)) a, α, β

Table 4. Probability distributions included in Tasmanian. The normalization constant for the Trun-
cated Gaussian distribution is C̃ =

(√
2πσ −

∫
(−∞,a)∪(b,∞) exp

(
− 1

2σ (ξ − µ)2
)
dξ
)

, and Γ(α) us the
gamma funciton.

• Metropolis-Hastings can handle multiple modes if the high probability region of the update distribu-
tion is sufficiently large; however, this is seldom practical as wide spread of the updates leads to very
low acceptance rate, which in turn leads to poor mixing.∗ DREAM largely circumvents this limitation
and can handle multiple modes without sacrificing acceptance rate.

• Evolving multiple chains simultaneously allows the use of batched evaluations of ρ(x), which can be
performed much more efficiently than sequential evaluations.

Note that setting γ = 0 reduces the DREAM algorithm to multiple independent chains of standard Metropolis-
Hastings.

3.2 Supported probability distributions

Tasmanian includes 6 probability distributions that can be used as priors in a context of Bayesian inference
(e.g., see 1.2). The pdfs and the associated parameters are listed in Table 4. In addition, Tasmanian imple-
ments Gaussian likelihood of form (5), where the covariance could be diagonal with constant or non-constant
diagonal entries, or a general dense matrix.

∗Mixing is a numerical phenomena where multiple iterates of the same chain have identical values, which is not desirable when
the chains are used for statistical analysis.

26

References

[1] S. ACHARJEE AND N. ZABARAS, A non-intrusive stochastic galerkin approach for modeling uncer-
tainty propagation in deformation processes, Computers & structures, 85 (2007), pp. 244–254. 2

[2] B. ADCOCK AND R. B. PLATTE, A mapped polynomial method for high-accuracy approximations on
arbitrary grids, SIAM Journal on Numerical Analysis, 54 (2016), pp. 2256–2281. 23

[3] N. AGARWAL AND N. R. ALURU, A domain adaptive stochastic collocation approach for analysis of
mems under uncertainties, Journal of Computational Physics, 228 (2009), pp. 7662–7688. 2

[4] V. BARTHELMANN, E. NOVAK, AND K. RITTER, High dimensional polynomial interpolation on
sparse grids, Advances in Computational Mathematics, 12 (2000), pp. 273–288. 2

[5] J. BECK, F. NOBILE, L. TAMELLINI, AND R. TEMPONE, Convergence of quasi-optimal stochas-
tic galerkin methods for a class of pdes with random coefficients, Computers & Mathematics with
Applications, 67 (2014), pp. 732–751. 8

[6] G. E. BOX AND G. C. TIAO, Bayesian inference in statistical analysis, vol. 40, John Wiley & Sons,
2011. 4

[7] H.-J. BUNGARTZ AND M. GRIEBEL, Sparse grids, Acta Numer., 13 (2004), pp. 147–269. 2

[8] M. A. CHKIFA, On the Lebesgue constant of Leja sequences for the complex unit disk and of their real
projection, Journal of Approximation Theory, 166 (2013), pp. 176–200. 10, 11

[9] , On the lebesgue constant of a new type of R-leja sequences, tech. rep., ORNL/TM-2015/657,
Oak Ridge National Laboratory., 2015. 11

[10] C. W. CLENSHAW AND A. R. CURTIS, A method for numerical integration on an automatic computer,
Numerische Mathematik, 2 (1960), pp. 197–205. 10

[11] S. DE MARCHI, On Leja sequences: some results and applications, Applied Mathematics and Com-
putation, 152 (2004), pp. 621–647. 11

[12] M. D’ELIA, E. PHIPPS, A. RUSHDI, AND M. EBEIDA, Surrogate-based ensemble grouping strategies
for embedded sampling-based uncertainty quantification, arXiv preprint arXiv:1705.02003, (2017). 2

[13] M. ELDRED, C. WEBSTER, AND P. CONSTANTINE, Evaluation of non-intrusive approaches for
wiener-askey generalized polynomial chaos, in Proceedings of the 10th AIAA Non-Deterministic Ap-
proaches Conference, number AIAA-2008-1892, Schaumburg, IL, vol. 117, 2008, p. 189. 2

[14] L. FEJÉR, On the infinite sequences arising in the theories of harmonic analysis, of interpolation, and
of mechanical quadratures, Bulletin of the American Mathematical Society, 39 (1933), pp. 521–534.
10

[15] D. GALINDO, P. JANTSCH, C. G. WEBSTER, AND G. ZHANG, Accelerating stochastic collocation
methods for partial differential equations with random input data, SIAM/ASA Journal on Uncertainty
Quantification, 4 (2016), pp. 1111–1137. 2

[16] D. GAMERMAN AND H. F. LOPES, Markov chain Monte Carlo: stochastic simulation for Bayesian
inference, CRC Press, 2006. 4

27

[17] T. GERSTNER AND M. GRIEBEL, Numerical integration using sparse grids, Numerical algorithms,
18 (1998), pp. 209–232. 2

[18] , Dimension–adaptive tensor–product quadrature, Computing, 71 (2003), pp. 65–87. 2

[19] M. GRIEBEL, Adaptive sparse grid multilevel methods for elliptic pdes based on finite differences,
Computing, 61 (1998), pp. 151–179. 2, 14, 21

[20] M. GRIEBEL AND J. HAMAEKERS, Fast Discrete Fourier Transform on Generalized Sparse Grids,
Lecture Notes in Computational Science and Engineering, Springer International Publishing Switzer-
land, 2014, ch. 4, pp. 75–107. 13

[21] M. GUNZBURGER, C. TRENCHEA, AND C. WEBSTER, A generalized stochastic collocation ap-
proach to constrained optimization for random data identification problems, Tech. Rep. ORNL/TM-
2012/185, Oak Ridge National Laboratory, 2012. 2

[22] M. GUNZBURGER, C. WEBSTER, AND G. ZHANG, An adaptive wavelet stochastic collocation
method for irregular solutions of partial differential equations with random input data, Tech. Rep.
ORNL/TM-2012/186, Oak Ridge National Laboratory, 2012. 2, 21

[23] M. D. GUNZBURGER, C. G. WEBSTER, AND G. ZHANG, Stochastic finite element methods for
partial differential equations with random input data, Acta Numer., 23 (2014), pp. 521–650. 2

[24] K. HALLATSCHEK, Fouriertransformation auf dünnen gittern mit hierarchischen basen, Numerische
Mathematik, 63 (1992), pp. 83–97. 13

[25] J. D. JAKEMAN, R. ARCHIBALD, AND D. XIU, Characterization of discontinuities in high-
dimensional stochastic problems on adaptive sparse grids, J. Comput. Phys., 230 (2011), pp. 3977–
3997. 2

[26] J. D. JAKEMAN, A. NARAYAN, AND D. XIU, Minimal multi-element stochastic collocation for un-
certainty quantification of discontinuous functions, J. Comput. Phys., 242 (2013), pp. 790–808. 2

[27] J. D. JAKEMAN AND S. G. ROBERTS, Local and dimension adaptive stochastic collocation for un-
certainty quantification, in Sparse Grids and Applications, Springer, 2012, pp. 181–203. 2

[28] P. JANTSCH AND C. G. WEBSTER, Sparse grid quadrature rules based on conformal mappings,
Sparse Grids and Applications, - (to appear), pp. –. 23

[29] V. KHAKHUTSKYY AND M. HEGLAND, Spatially-dimension-adaptive sparse grids for online learn-
ing, in Sparse Grids and Applications – Stuttgart 2014, Springer, 2016, pp. 133–162. 2

[30] A. KLIMKE AND B. WOHLMUTH, Algorithm 847: Spinterp: piecewise multilinear hierarchical
sparse grid interpolation in matlab, ACM Transactions on Mathematical Software (TOMS), 31 (2005),
pp. 561–579. 2, 14

[31] X. MA AND N. ZABARAS, An adaptive hierarchical sparse grid collocation algorithm for the solution
of stochastic differential equations, Journal of Computational Physics, 228 (2009), pp. 3084–3113. 2,
14

[32] Z. MORROW AND M. STOYANOV, A method for dimensionally adaptive sparse trigonometric inter-
polation of periodic functions, arXiv preprint arXiv:1908.10672, (2019). 14

28

[33] A. NARAYAN AND J. D. JAKEMAN, Adaptive Leja sparse grid constructions for stochastic collocation
and high-dimensional approximation, SIAM J. Sci. Comput., 36 (2014), pp. A2952–A2983. 2

[34] F. NOBILE, L. TAMELLINI, AND R. TEMPONE, Convergence of quasi-optimal sparse-grid approx-
imation of Hilbert-space-valued functions: application to random elliptic PDEs, Numer. Math., 134
(2016), pp. 343–388. 2

[35] F. NOBILE, R. TEMPONE, AND C. G. WEBSTER, An anisotropic sparse grid stochastic collocation
method for partial differential equations with random input data, SIAM Journal on Numerical Analy-
sis, 46 (2008), pp. 2411–2442. 2

[36] F. NOBILE, R. TEMPONE, AND C. G. WEBSTER, A sparse grid stochastic collocation method for
partial differential equations with random input data, SIAM Journal on Numerical Analysis, 46 (2008),
pp. 2309–2345. 2

[37] T. C. PATTERSON, The optimum addition of points to quadrature formulae, Mathematics of Computa-
tion, 22 (1968), pp. 847–856. 11

[38] D. PFLÜGER, Spatially adaptive refinement, in Sparse Grids and Applications, Springer, 2012,
pp. 243–262. 2

[39] D. PFLÜGER, B. PEHERSTORFER, AND H.-J. BUNGARTZ, Spatially adaptive sparse grids for high-
dimensional data-driven problems, J. Complexity, 26 (2010), pp. 508–522. 2

[40] E. PHIPPS, M. D’ELIA, H. C. EDWARDS, M. HOEMMEN, J. HU, AND S. RAJAMANICKAM, Em-
bedded ensemble propagation for improving performance, portability, and scalability of uncertainty
quantification on emerging computational architectures, SIAM Journal on Scientific Computing, 39
(2017), pp. C162–C193. 2

[41] S. A. SMOLYAK, Quadrature and interpolation formulas for tensor products of certain classes of
functions, Dokl. Akad. Nauk SSSR, 4 (1963), pp. 240–243 (English translation). 2

[42] F. SPRENGEL, A class of periodic function spaces and interpolation on sparse grids, Numerical Func-
tional Analysis and Optimization, 21 (2000), pp. 273–293. 13

[43] M. STOYANOV, Hierarchy-direction selective approach for locally adaptive sparse grids, tech. rep.,
ORNL/TM-2013/384, Oak Ridge National Laboratory., 2013. 2, 3, 14, 17

[44] M. STOYANOV, Adaptive sparse grid construction in a context of local anisotropy and multiple hi-
erarchical parents, in Sparse Grids and Applications-Miami 2016, Springer, 2018, pp. 175–199. 2,
20

[45] M. STOYANOV, P. SELESON, AND C. WEBSTER, Predicting fracture patterns in simulations of brittle
materials under variable load and material strength, in 19th AIAA Non-Deterministic Approaches
Conference, 2017, p. 1326. 2

[46] M. K. STOYANOV AND C. G. WEBSTER, A dynamically adaptive sparse grid method for quasi-
optimal interpolation of multidimensional analytic functions, arXiv preprint arXiv:1508.01125,
(2015). 2, 3, 7, 8, 10, 11, 12

[47] , A dynamically adaptive sparse grids method for quasi-optimal interpolation of multidimensional
functions, Computers & Mathematics with Applications, 71 (2016), pp. 2449–2465. 2

29

[48] W. SWELDENS AND P. SCHRÖDER, Building your own wavelets at home, in Wavelets in the Geo-
sciences, Springer, 2000, pp. 72–107. 21

[49] J. A. VRUGT, C. TER BRAAK, C. DIKS, B. A. ROBINSON, J. M. HYMAN, AND D. HIGDON, Accel-
erating markov chain monte carlo simulation by differential evolution with self-adaptive randomized
subspace sampling, International Journal of Nonlinear Sciences and Numerical Simulation, 10 (2009),
pp. 273–290. 4

[50] J. A. VRUGT, C. J. TER BRAAK, M. P. CLARK, J. M. HYMAN, AND B. A. ROBINSON, Treatment of
input uncertainty in hydrologic modeling: Doing hydrology backward with markov chain monte carlo
simulation, Water Resources Research, 44 (2008). 4

[51] G. ZHANG AND M. GUNZBURGER, Error analysis of a stochastic collocation method for parabolic
partial differential equations with random input data, SIAM Journal on Numerical Analysis, 50 (2012),
pp. 1922–1940. 2

[52] G. ZHANG, M. GUNZBURGER, AND W. ZHAO, A sparse grid method for multi-dimensional backward
stochastic differential equaitons, Journal of Computational Mathematics, 31 (2013), pp. 221–248. 2

[53] G. ZHANG, D. LU, M. YE, M. GUNZBURGER, AND C. WEBSTER, An adaptive sparse-grid high-
order stochastic collocation method for bayesian inference in groundwater reactive transport model-
ing, Water Resources Research, 49 (2013), pp. 6871–6892. 4

30

	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Quick Overview
	Sparse grids
	DREAM

	Sparse Grids
	Global Grids: General construction
	Global Grids: Approximation error
	Global Grids: Sequence Grid
	Global Grids: Refinement
	Global Grids: One dimensional rules
	Chebyshev rules
	Gauss rules
	Greedy rules

	Fourier Grids
	Local Polynomial Grids: Hierarchical interpolation rule
	Local Polynomial Grids: Adaptive refinement
	Local Polynomial Grids: One dimensional rules
	Wavelets
	Domain Transformation
	Conformal Map

	Alternative coefficient construction

	Random Sampling
	DREAM: General algorithm
	Supported probability distributions

